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FOREWORD

This is a progress report on the research project, "Analysis and
Computation of Internal Flow Field in a Scramjet Engine," for the period
ending December 31, 1986. The work was supported by the NASA Langley
Research Center (Computational Methods Branch of the High-Speed
Aerodynamics Division) through research grant NAG-1-423. The grant was
monitored by Dr. A. Kumar and Mr. J.P Drummond of the High-Speed

Aerodynamics Division,




INTERACTION GF TRANSIENT RADIATIOM
IN NONGRAY GASEQUS SYSTEMS

S. N. Tiwari” and D. J. Singh*
01d Dominion University, Norfolk, VA 23508

ABSTRACT

A general formulation is presented to investigate the transient radiative
interaction in nongray absorbing-emitting species between two parallel plates.
Depending 6n the desired sophistication and accuracy, any nongray absorption
model from the line-by-line models to the wide-band model correlations can be
employed in the formulation to investigate the radiative interaction. Special
attention is directed to investigate the radiative interaction in a system
initially at a uniform reference temperature and suddenly the temperature of
the bottom plate is reduced to a lower but constant temperature. The interac-
tion is considered for the case of radiative equilibrium as well as for
combined radiation and conduction. General as well as limiting forms of the
governing equations are presented and solutions are obtained numerically by
employing the method of variation of parameters. Specific results are
obtained for CO, CO,, H,0, and OH. The information on species H,0 and OH is
of special interest for the proposed scramjet engine application. The results
demonstrate the relative ability of different species for radiative

interactions.

*Eminent Professor, Department of Mechanical Engineering and Mechanics. AIAA
Associate Fellow.

*Graduate  Research Assistant, Department of Mechanical Engineerng and
Mechanics. AIAA Student Member.
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NOMENCLATURE

band absorptance = A(u,B), em !

band width parameter, em™?

correlation parameter, atn™l - em~1

specific heat at constant pressure, kd/kg-K = erg/gm-K
Planck's function, (W-cm™%)/cm™!

Planck's function evaluated at wave number W

emissive power of surfaces with temperatures T, and Ty, W-cm™ 2

gas property for the large path length limit, W/(cmZ-K)

thermal conductivity, erg/cm-sec-K

gas property for the optically thin limit, W/ (atm-cm3-K)

distance between plates, cm

large path length parameter, nondimensional

optically thin parameter, nondimensional

optica11y thin radiation-conduction parameter = Nl/R, nondimensional
pressure, atm

conduction plus radiation heat flux = G + GRs w/cm2
total radiative heat flux, w/cm@

conduction heat flux, w/cn?

spectral radiation heat flux, (w-cm~2) /em™ !
nondimensional radiative heat flux

nondimensional conduction plus radiation heat flux
nondimensional transient conduction parameter
integrated intensity of a wide band, atm™ t-cm™2
time, sec (also used as ")

characteristic time, sec

nondimensional time = t/t,

ix




temperature, K

wall temperature, K; Tl =Ty
nondimensional coordinate = SPy/AO
nondimensional path length = SPL/Ao
transverse coordinate, ¢m
nondimensional temperature

spectral absorption coefficient, em™!
nondimensional coordinate = y/L = u/ug
density, kg/m3

Stefan-Boltzmann constant, erg/(sec-cmZ—K4)
1

wave number, cm_

wave number at the band center, em™L




1. INTRODUCTION

The field of radiative energy transfer in gaseous systems is getting an
ever increasing attention recently because of its applications in the areas of
the earth's radiation budget studies and climate modeling, fire and combustion
research, entry and reentry phenomena, hypersonic propulsion and defense-
oriented research. In most studies involving combined mass, momentum, and
energy transfer, however, the radiative transfer formulation has been coupled
mainly with the steady pr'ocessesl'11 and the interaction of radiation in
transient processes has received very little attention. Yet, the transient
approach appears to be the logical way of formulating a problem in a general
sense for elegant numerical and computational solutions. The steady-state

solutions can be obtained as limiting solutions for large times.

A few studies available on radiative ineractions reveal that the
transient behavior of a physical system can be influenced significantly in the
presence of radiation12'17. Lick investigated the transient energy transfer
by radiation and conduction through a semi-finite mediumlz. A kernal
substitution technique was used to obtain analytic solutions and display the
main features and parameters of the problem. Steady and transient heat
transfer in conducting and radiating planar and cylindrical mediums were
analyzed in Refs. 13 and 14 according to the differéntia1 formulation. The
analyses based essentially on the gray formulation provide some qualitative
insight into the effect of absorption and emission on the transient
temperature distribution in the gas. Doornink and Hering15 studied the
transient radiative transfer in a stationary plane layer of a nonconducting
medium bounded by black walls. A rectangular Milne-Eddington type relation
was used to describe the frequency dependence of the absorption coefficient.

It was found that the cooling of the layer initially at a uniform temperature




is strongly dependent on the absorption coefficient model employed. Larson
and Viskantal® investigated the problem of transient combined laminar free
convection and radiation in a rectangular enclosure. It was demonstrated that
the radiation dominates the heat transfer in the enclosure and alters the
convective flow patterns significantly. The transient heat exchange between a
radiating plate and a high-temperature gas flow was investigated by Melnikov
and Sukhovichl7. Only the radiative interaction from the plate was
considered; the gas was treated as a non-participating medium. It was proved
that the surface temperature is a function of time and of Tlongitudinal
coordinate. Some other works on transient radiation and related areas are

available in Refs. 18-22.

The goal of this research is to include the nongray radiative formulation
in the general unsteady governing equations and provide the step-by-step
analysis and solution procedure for several realistic problems. The specific
objective of the present study is to investigate the interaction of nongray
radiation in transient transfer processes in a general sense. Attention,
however, will be directed first to a simple problem of the transient radiative
exchange between two parallel plates. In subsequent studies, the present
analysis and numerical techniques will be extended to include the flow of
homogeneous, nonhomogeneous, and chemically reacting species in one- and

multi-dimensiconal systems.




2. BASIC THEORETICAL FORMULATION

The physical model considered for the present study is the transient
energy transfer by radiation 1in absorbing-emitting gases bounded by two
parallel gray plates (Fig. 2.1). In general, T; and T, can be a function of
time and position and there may exist an initial temperature distribution in
the gas. It is assumed that the radiative energy transfer in the axial

direction is negligible in comparison to that in the normal direction.

For radiation participating medium, the equations expressing conservation
of mass and momentum remain unaltered, while the conservation of energy, in

general, is expressed asl

DT . DP .
p cp 7T = div (k grad T) + BT pEt A O-divay (2.1)

where p is dynamic viscosity, B is the coefficient of thermal expansion of the
fluid and ¢ 1is the Rayleigh dissipation function. For a semi-infinite medium

capable of transferring energy only by radiation and conduction, Eq. (1)

reduces to
3T _ _ dq
p Cpﬁ = '67 (2.2)
where ¢ is the sum of the conductive heat flux Qe = - k (d3T/a3y) and the

radiative flux gp. For the physical model where radiation is the only mode of

energy transfer, the energy equation can be written as

0q
T _ %R
pCp—a—t- W (2.3)

Use of this simplified equation is made to investigate the transient behavior

of a radiation participating medium.

For many engineering and astrophysical applications, the vradiative

transfer equations are formulated for one-dimensional planar systems. For
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diffuse nonreflecting boundaries and in the absence of scattering, the

expression for the total radiative flux is given, for a n-band gaseous system,
1,8,23

by
(y) S S 30 yen
Qp(y) = e, - e, + 2) « expl- 3 ¢ (y-2)]dz
R 1 2 ? i=1 Aw.i 0 lw,' w]_ '2' w-i
, 3
- [ R, (2) x, expl- 3k (z-y)ldzddw,  (2.4)
Y 1 1 i
where

Flw.(z) = ew.(z) - elw.; FZw.(Z) = em.(Z) - eZm.
1 1 1 1 1 1

Equation (2.4) 1is in proper form for obtaining the nongray solutions of
molecular species. In fact, this is an ideal equation for the line-by-line
and narrow-band model formulations, However, in order to be able to use the

wide band models and correlations, Eq. (2.4) is transformed in terms of the

correlation quantities asl»7-11,23

n g _
o (B) = ey - eyt g I Aot Yot U Fry (810 [ oy (€781 JaE"
1= 0 1
1 [ e 3 [l ]
- [F’ FZwi(é ) A1. [? Uos (£'-g)1de'} (2.5)
where
g = u/u0 = y/L; &' = U'/u0 =z/L; A = A/Ao;
u = (S/Ao) Py; uo = (S/Ao) PL; PS = wa Ko dw

It should be noted that Flw. and sz in Eq. (2.5) represent the values at
i i
the center of the ith band and A'(u) denotes the derivative of A(u) with

respect to u, Upon performing the integration by parts, Eq. (2.5) can be



6
expressed in an alternate form as?3
n g -3
GRIE) = e = epr I Ay {f e, (81)/d8'] R, [7 up(x-8")1ee’
i= 0 i
1 = 3
+] [de, (£')/de'] A, [5ug; (£'-8)1de") (2.6)
£ i

A direct differentiation of Eq. (2.6) provides the expression for the

divergence of radiative flux as

I

W ™M

£
Agi U {Io [dew1(i')/d§'] X

j=1 9

_ 1
AY Gy ug(E-8')1dg’ - J, Lee, (87)/de'] x

Rl T3 ug,(8'-E)1de’) (@)

Equations (2.5) through (2.7) are the most convenient equations to use when

employing the band-model correlations in radiative transfer analyses.

By defining ¢ (£,t) = T(&,t)/To with T, representing some constant
reference temperature, Egs. (2.2) and (2.7) can be combined to yield the
energy equation (for the general case of simultaneous conduction and

radiation) in nondimensional form as

2% 3 N %
09 (E,t)/at =R-— -5 £ {f ¢ (£',t) x
dE i=l o
- 3 1
A.i [‘2’ uo.i (E_,'g )]dg = jg q»’w.i (g st) X
A 3 [} 1
As [? uy; (8 -£)1dg'} (2.8)




where

_ 2
R =k tm/(p Cp L")

byi(E2t) = {PS,(T)l8 e . (E,0)/0E]/(p Cp T /t )}

The time t in Eq. (2.8) is defined as t* = t/t, with t, representing some
characteristic time scale of the physical problem; however, for the sake of
convenience, the asterisk is 1eft out here as well as in further developments.
From the definitions of ¢(£,t) and ¢wi(§,t), it should be noted that Eq.
(2.8) dis a nonlinear equation in T(E,t). Equation (2.8), therefore,
represents a general case of the transient energy transfer by radiation and
conduction between two semi-infinite parallel plates. The nondimensional
parameter R in Eq. (2.8) is analogous to the Fourier number. For R = 0, Eq.
(2.8) reduces to the case of pure transient radiative energy transfer. The
initial and boundary conditions for Eq. (2.8) will depend on the conditions of

the specific physical problem.

2.1 Specific Application

As a special case, it is assumed that the entire system initially is at
the fixed (reference) temperature T,. For all time, the temperature of the
upper plate is maintained at the constant temperature equal to the reference
temperature, i.e., T, = T,. The temperature of the lower plate is suddenly
decreased to a lower but constant value, i.e., T; < T,. The problem,
therefore, is to investigate the transient cooling rate of the gas for a step

change in temperature of the lower plate.

In many radiative transfer analyses, it is often convenient (although not

essential) to employ the relation for the linearized radiation as

em‘(T) - e, (Tw) = (d ew./dT)T (T-Tw) (2.9)

i i i W




where again the subscript i refers to the ith band such that w; is the wave
number location of the band and T, represents the temperature of the reference
wall which could be either T; or T,. For the special case considered, since
we are interested in investigating the transient behavior of the gas because
of a step change in temperature of the lower plate, T, is taken to be equal to
Ty. It should be pointed out that for a single-band gas, the linearization is
not required because the temperature distribution can be obtained from Eg.
(2.8) and the radiative heat flux can be calculated from Eqs. (2.5) and (2.6).
However, for the case of multiband gases and for systems involving mixtures of
gases, it is convenient to employ the linearization procedure in order to use
the information on band model correlations. The following definitions are

useful in expressing the governing equations in linearized forms:

6 = (T-Tl)/(Tz-Tl) (2.10a)

Nl_i = (Ptm/p cp) Kli s Kli = Si(T) (d em-/dT)T1 (2.10b)
n

N = (P tm/p cp) Ky» Ky = 151 K13 (2.10c)

Mli = (tm/L 0 cp) Hli s Hli = Am.(T)(d e.m./dT)Tl (2.10d)
n

M1 = (tm/L o cp) H1 . H1 = iil Hli (2.10e)

Mli Ui = Nli s U s Hys = PL Kli (2.10f)

where Hl, Kys Ny and M) represent the values of H, K, N and M evaluated at the
temperature T;. As explained in Refs. 1 and 8, these quantities represent the

properties of the gaseous medijum.




|

The initial and boundary conditions for the physical problem considered

are
8(g,0) = 1; 6(0,t) = 0; 8(1,t) =1 (2.11)

It is important to note that the boundary conditions given in Eq. (2.11) are
applicable only to the case of simultaneous conduction and radiation energy
transfer. The cases of transient radiation and radiation with conduction are

treated separately in the following sections.

2.2 Transient Radiation

By employing the definitions of Eqs. (2.9) and (2.10), Eq. (2.8) is

transformed to obtain a convenient form of the energy equation for the

transient radiation case a523
n g
20(g,t) _ 3 28(%',t)
st 2 L Ny U A

i=1 0

-, .3 1 pe(&8',t)

Ai[E uOi(g-g )]dg = IE —-—aar—- X

A 3 [ ]

The parameters in Eq. (2.12) are N; and u,. For a given gas, the parameters
are the gas pressure and the temperature of the 1owef wall, As pointed out
earlier, the boundary conditions given in Eq. (2.11) are not applicable to Eq.
(2.12) because this equation does not require a boundary condition. Thus, in
this case, the temperature of the medium adjacent to a surface differs from
the surface temperature. This 1is because the temperature of the medjum
adjacent to a surface is affected not only by the surface but also by all
other volume elements and surfaces. The radiation slip method is a means of

accounting for such temperature jumps and this is discussed in Ref. 1.
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For the case of transient radiative interaction, the nondimensional

radiative heat flux is defined by
Q(z,t) = qR(E,t)/[el(t) - ez(t)] (2.13)

By employing the definitions of Egs. (2.9), (2.10), and (2.13), relations for

the radiative flux, as given by Egs. (2.5) and (2.6), are expressed as

g
Q(E,t) = 1- (3/8 0 T2} £ u . H (f 8(E',t) x

1 oi 1i °

[L I g R

;
at 3 [] ] 1 ]

Ay [ ug;(E-g')1de’ + fa [1- e(g',t)] x

ALY uy;(E'-8)1dE") (2.142)

and

n 1 '
Q(e,t) =1~ (1/4 0 Tf) I Hli{f 20(E',t) x

i=1

1 :
‘|3 ! [ be(& ,t)
B3 gy (ae 0" - f 22Ut

i3 ' i
A L3 u(e'-8) e’} (2.14b)

It should be pointed out that Eq. (2.14a) 1is a convenient form for the
optically thin and general solutions while Eg. (2.14b) is useful for solutions
in the large path length limit. Once the solutions for ©6(£,t) are known
from the energy equation, the appropriate relations for the heat flux can be
obtained from Eqs. (2.14). It should be noted that the quantity Hl/(cTi) in

Egs. (2.14) is nondimensional.
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2.3 Radiation and Conduction

For this case where conduction heat transfer takes place simultaneously
with radiative transfer, the energy equation is given by Eq. (2.8). Thus, a

combination of Egs. (2.8)-(2.10) results in

2 n g [
20 _ , 3“0 _ 3 28(g',t)
A=A S R

1 \
- 3 e v _ (o 88(E',t)
Ay [z ug;(5-8")dE fg —— X

R 3 [ )
Aj (> Uyi (8 £)]dg"} (2.15)

Since the presence of conduction implies continuity of temperatures at the

boundaries, the boundary conditions for Eq. (2.15) are those given in Eq.

L]

(2.11). The quantity Nj/R can be expressed as N = Ni/R (PLz/k)Kl. The
nondimensional parameter N denotes the relative importance of radiation versus
conduction in the gas. For particular values of P and L, it is actually the
dimensional gas property NI/(RPLZ) = K;/k that represents the relative

importance of radiation versus conduction.

For the case of no radiation, Eq. (2.15) becomes

38 626

= R (2.16)
3t oF

The separation of variables results in a general solution of Eq. (2.16) as

6 = exp(-AZ Rt) (8, sin AE + B, cos A E) (2.17)

where xz is the separation parameter. The particular solution of Eq. (2.17)

can be obtained by satisfying the boundary conditions. Alternately, by

defining a similarity variable n =£//4Rt, Eq. (2.16) can be written as
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a0 _
—t M g =0 (2.18)

The solution of Eq. (2.18), with initial and boundary conditions given by Eaq.

{2.11), is found to be

8(g,t) = (2//%) erf n (2.19)

This solution is applicable for relatively large separations between the

plates.

In the case of simultaneous conduction and radiation heat transfer, the

nondimensional heat flux is defined as

Q = [q (g,t) + qp(€,t)1/[e (1) - e,(t)] (2.20)

Alternately, this can be expressed as

0 = C(a6/d3E) + Q (2.21)
where

C = k(T1 - T2)/(L[e1(t) - ez(t)]}

The expression for Q in Eq. (2.21) is obtained either from Eq. (2.14a) or
from Eq. (2.14b). It should be noted that the relation for 6 needed in Eq.

(2.21) comes from the solution of Eq. (2.15).
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3. METHOD OF SOLUTIONS

The solution procedures for the transient radiation and radiation with
conduction cases are presented in this section. The procedure for the case of
transient radiative energy transfer is given first and this is followed by the

procedure for combined radiation and conduction.

3.1 Transient Radiative Equilibrium

For the general case of transient radiative equilibrium, the temperature
distribution is obtained from the solution of the energy equation, Eq. (2.12).
Once 6(£,t) 1is known, the radiative heat flux is calculated by using the
appropriate form of Eq. (2.14)., Before discussing the solution procedure for
the general case, however, it is desirable to obtain the 1limiting forms of
Egs. (2.12) and (2.14) 1in the optically thin and large path length Timits and

investigate the solutions of resulting equations.

3.1.1 Optically Thin Limit

In the optically thin limit A(u) = u and A'(u) =1, and therefore, Eq.
(2.12) reduces tol»8:23

26(E,t) -3\ =
—F— * 3N 8(E,t) -5 Ny =0 (3.1a)

From an examination of Eq. (3.1a) along with the definitions given in Eq.
(2.10), it is evidient that in the optically thin 1limit the temperature
distribution in the medium is independent of the &- coordinate for the case
of pure radiative exchange. This is a charateristic of the optically thin
radiation in the absence of other modes of energy transfer. Thus, Eq. (3.1a)

can be written as

de(t)

3
+ 3 N1 o(t) "3 Nl = 0; 8(§,0) =1 (3.1b)




14
Since gas properties are evaluated at known reference conditions, N; is
essentially constant, and solution of Eq. (3.1b) is found to be
-1 -
6(t) =5[1+ exp(- 3 N, t)] (3.2)

In the optically thin limit both forms of Eq. (2.14) yield the same final

relation for the radiative flux a523
Q(g,) = 1 - [3/(80THT (PLK)) [(1-E) +
+ (28 - 1) 8(t)] (3.3)

It should be pointed out that in Eq. (3.3) the quantity (PLKl/cTi) is
nondimensional. The relation for 6(t) in Eq. (3.3) is obtained from Eq.
(3.2). Thus, evaluation of the temperature distribution and radiative heat

flux in the optically thin limit does not require numerical solutions.

3.1.2 Large Path Length Limit

In the large path length limit (i.e., for uy; >> 1 for each band), one
has A(u) = = an(u), A'(u) = 1/u, and A''(u) = - 1/u’. Thus, in this Timit,
Eq. (2.12) reduces tol»8»23

FE3 (3.4)

0(E,t) _ _ fl d0(g',t) d&'
l 0 2

An analytical solution of Eq. (3.4) may be possible, but numerical solution

can be obtained quite easily.

In the Jlarge path Jlength Tlimit, Egs. (2.14a) and (2.14b) reduce

respectively to
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1
-1 - 3 ' dg'
Q(E,t) =1 (1/04T1) Hl[fo o(%',t) =T
1 )
- f TE%'T] (3.5a)
and &
n g
.. 3 26(%',t)
Q(e,t) =1 (1/4oTl) '2 Hli{f ___EET_- X
i=1 o}
1
3 gt . d8(E',t)
Jln[-z uoi(l’, £')]dg"' + fa —r— X
(3 v, (2'-€)1dg ) (3.5b)

The expressions for dimensionless radiative heat flux from or to the wall are

obtained by setting & = 0 1in Egs. (3.5).

3.1.3 Numerical Solutions of Governing Equations

The general solutions of Eqs. (2.12) and (3.4) are obtained numerically
by employing the method of variation of parameters. For this, a polynomial
form for 6(E,t) is assumed in powers of £ with time dependent coefficients as

e(gnt) =

c (t) &M (3.6)
m m

o

™3

By considering only the quadratic solution in &, and satisfying the boundary

conditions of Eq. (2.11), one finds
_ g2 2
8(g,t) =& + g(t) (g-&%) (3.7)

where g(t) represents the time dependent coefficient. At t = 0, a combination

of Eqs. (2.11) and (3.7) yields the result

g(0) = (1-%)/(e-£%) (3.8)
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Equations (3.7) and (3.8) are used to obtain specific solutions of Egs. (2.12)
and (3.4). Once the temperature distribution is known, the expressions for
heat flux are obtained by numerically integrating the corresponding equations.
The entire numerical procedure is described in detail in Ref. 23. The
numerical procedure is similar for higher order solutions in & of Eq. (3.6),

but computational resources required are considerably higher.

3.2 Radiation with Conduction

Equations (2.15), (2.20) and (2.21) are the appropriate equations to
describe the combined process of conduction and radiation energy transfer.

The energy equation, Eq. (2.15), reduces in the optically thin limit to

2
06 3 _p 00

A closed form solution of this equation may be possible but a numerical

solution can be obtained easily. In the large path length limit, Eq. (2.15)

reduces to
2 1 '
20 _ , 28 _ 3  df
3t - N 222 St fo og” TE-€") (3.10)

The solution of this equation is obtained numerically.

The general solution of Eq. (2.15) 1is obtained by using the method of
variation of parameters as discussed in Sec. 3.1 and Ref. 23. For a quadratic

solution in &, a combination of £gs. (2.15) and (3.7) results in

g'(t) + Jl(i) gl{t) = JZ(E) (3.11a)
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where
3 n t 1 A ' 1
JE) = 2R CE) g L) TNy [ (1-28") Af Dby (z-2t)]a
1 -
- [ (1-2') Ay [bi(g'-E)1dg'} (3.11b)
g
n 5 [y 1 1
TpB) = 2RC(E) - 3 Cl8) E Ny {IO g AL [b.(5-2")1de
1 -
-] &' Ay [b(g'-e)lde'} (3.11c)
g
- . = - 2

and n represents the number of vibration-rotation bands. The solution of Eq.

(3.11a) is found to be23

g(t) = [9(0) = J,(£)/3;(5)] expl-J,(E)t] + J,()/J,(E) (3.12)

where g(0) is given by Eq. (3.8). The integrals in J; and J, are evaluated
numerically by following the procedure discussed in Ref. 23. With g(t) known
from Eq. (3.12), Eq. (3.7) provides the solution for the temperature distribu-
tion. Once 6(E,t) is known, the heat transfer is calculated by using either

Eq. (2.20) or Eq. (2.21).

In the optically thin 1imit, the expression for J; and Jy, as defined by
Egqs. (3.11b) and (3.11lc), reduce to

n

Ji(€) = 2R C(§) + 3 Ny (3.13a)

3,(8) = C(&) (2R - 3(g% - 1/2)N] (3.13b)
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In the large path length 1imit, the expressions for J; and J, are obtained as

1

Jy(E) = CE) 2 R+3M [ [(1-28")/(5-E')1dE") (3.14a)
0
1

J,(8) = C(E) (2R - 3 M, fo ['/(g-8')1de"} (3.14b)

Equations (3.13) and (3.14) are useful in obtaining numerical solutions for

the limiting cases.
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4. PHYSICAL CONDITIONS AND DATA SOURCE

For the physical problem considered (Fig. 2.1) four specific absorbing-
emitting species were selected for an extensive study; these are CO, COZ, OH
and Hy0. The species CO was selected because it contains only one fundamental
vibration-rotation (VR) band and all spectral information are easily available
in the Tliterature. It is a very convenient gas to test the numerical
procedure without requiring excessive computational resources. Species OH and
H,0 are the primary radiation participating species for the pressure and
temperature range anticipated in the combustor of the scramjef engine.
Species €0y, and combinations of C0, and H,0 are important absorbing-emitting

species in many other combustion processes.

In radiative transfer analyses, it is essential to employ a suitable
model to represent the absorption-emission characteristics of specific species
under investigation. Several line-by-line, narrow-band, and wide-band models
are available to model the absorption of é VR band (Refs. 7-11)., However, it
is often desirable to use a simple correlation to represent the total
absorption of a wide band. Several such correlations are available 1in the
literature (Refs. 7-11). The relative merits of these correlations are

discussed in Ref. 1l1. In this study, the correlation proposed by Tien and

7

Lowder’ is employed and this is given by

A(u) = n (uf(B) [yppray] + D) (4.1)

where
f(B) = 2.94[1 - exp(~ 2.60 B)]

and B represents the line structure parameter.
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The spectral information and correlation quantities needed for CO, CO,
and H,0 we;e obtained from Refs. 7-9. The spectral data for OH were obtained
from Re}s. 24 and 25, and correlation quantities are developed in Appendix A,
The specific VR bands considered for each species are: CO (4.74 funda-
mental), OH (2.8u fundamental), CO, (15u, 4.3u and 2.7u), and Hy0 (20u,
6.3u, 2.7u, 1.87u, and 1.38u). The radiative properties of important

species are provided in Appendix A.

It is important to consider the variation of thermodynamic and transport
properties with temperature and pressure. This information is available for
important species in Refs., 26-28 and essential information for the present

study is provided in Appendix B.

For the specific problem considered, the dependent variables are 6, Q,
and Q, and independent variables are & and t. The parameters for general
solutions are Ty, T2/T1, Ugs and t;. For the radiative equilibrium case, 6
and Q depend only on t and Ny in the optically thin 1imit and on &, t, and My
in the 1large path length 1imit. For the case of combined radiation and
conduction, 8 and Q depend on £, t, and N = Nl/R in the optically thin limit
and on £, t, and M = M1/R in the large path length limit. Information on
radiative ability of various species in the optically thin and large path
length Timits is available in Ref. 8 and Appendix C. The parameters for
specific solutions for different species are Tl, T2/Tl, P, L, and th-
Extensive results, therefore, can be obtained by varying these parameters.
For parametric studies, however, only certain values of pressure, temperature,
and plate spacing were selected and results were obtained for the general as
well as 1limiting cases, Unless stated otherwise, specific results were

obtained for T2 = 2 Tl'
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5. RESULTS AND DISCUSSION

Results have been obtained for different radiation participating species
for both cases, the radiative equilibrium and radiation with conduction. The
computer program used for numerical solutions is provided in Appendix D. It
should be realized at the outset that, according to the physics of the
problem, the gas initially is at a high temperature T; = T,. At t = 0, the
temperature T; is lowered to a constant value. The energy exchange then
occurs and the gas cools down in time until a steady-state conditon is
reached. At this time, a certain temperature profile is established and a
fixed amount of energy exchange occurs irrespective of the time. The rate of
cooling of the gas 1layer, therefore, 1is dependent on the nature of the

participating species and on the physical parameters of the problem.

Some limiting solutions that are independent of any participating species
are presented first in Figs. 5.1 and 5.2 for the radiative equilibrium case.
In Fig. 5.1, the temperature distribution in the channel is plotted as a
function of the optically thin parameter Nl for different times. Similar
results are illustrated in Fig. 5.2 (with solid lines) for even higher values
of Nj. These results show an exponential decay with time reaching the steady-
state value of 6=1/2 for t>=. The temperature distribution for the large
path length 1limit is shown in Fig. 5.2 (with broken lines) as a function of
the large path length parameter M; and for different times. Although the
numerical values are entirely different, these results also show the
exponential decay with time and reach the limiting value of 6 = 1/2 for
t > =, It should be noted that while the optically thin solutions are
independent of the E-coordinate, the large path length solutions do depend on
£ and they have been obtained for & = 0.5. In the case of simultaneous

radiation and conduction, both optically thin and large path length solutions
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for temperature distribution depend on £. These results, however, can be
expressed 1in terms of the radiation-conduction parameter N=N;/R in the

optically thin limit and M = M;/R in the large path length limit.

The radiative equilibrium temperature distribution for CO are shown in
Fig. 5.3 for three different characteristic times and for P = 1 atm, L = 10
cm, and Tw‘= 500 K. For small t., t* = t/t, becomes large and, therefore, ©
varies slowly with t*; the reverse is true for large t, values. This trend is
evident clearly from the simplest case of the optically thin solution given by
Eq. (3.2). Similar trends in results were observed also for other species for
different values of P, T, and L. Thus, to demonstrate typical transient
trends, other results presented in this study were obtained for an

intermediate value of the characteristic time tm = 0.00001 sec.

The centerline temperature variations with time are illustrated in Fig.
5.4a for CO and in Fig. 5.4b for OH. General and limiting solutions are shown
for pure conduction, radiation, and radiation with conduction for P = 1 afm,
T, = 500 K, and L = 10 cm. It is noted that for both gases the optically thin
solutions approach the steady-state conditions faster than the 1large path
length and general solutions. For the physical conditions considered, the
energy is transferred faster by conduction than by radiation, and the steady-
state conditions are reached earlier by the combined radiation and conduction
process. Although OH is a relatively better heat conducting gas, CO is seen
to be more effective 1in the radiative transfer. For the same physical
conditions as 1in Figs. 5.4, the radiation and radiation with conduction
results are compared for CO, OH, H20, and C02 in Fig. 5.5. It is seen that H20
is most effective and OH is least effective in transferring the radiative
energy. The ability of a gas to transfer radiative energy depends on the

molecular structure of the gas, band intensities and physical conditions of
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the problem. Thus, H,0 with five strong VR bands is a highly radiation
participating species and the steady-state conditions are reached quickly for
H20 than for other species. However, CO with one fundamental band is seen to
be a better radiating gas than CO, with three VR bands. This is because for
the given physical conditions, the optical thickness of C0, is sufficiently
large and in the large path length limit €0, is relatively less effective in
transferring the radiative energy (Ref. 8 and Appendix C). Further results
for CO and OH are illustrated in Figs. 5.6 for different wall temperatures.
It is seen that while radiation is less effective than conduction at T, = 500
K, it is highly effective at T, = 1,000 K. This, however, would be expected
because radiation becomes considerably important at higher temperatures. The
steady-state condition is reached quicker for T, = 1,000 K than for T, = 500
K. In fact for the characteristic time considered (t, = 0.00001 sec.), the
steady-state condition is reached quickly for all species for temperatures
higher than T, = 1,000 K. Results for the pure radiation case are illustrated
in Figs. 5.7 for CO and OH for L =1 cm and 10 ¢cm. It is seen that while the
general and large path length solutions depend on the plate spacing the
optically thin solutions are independent of the spacing. This fact was
pointed out earlier in the method of solution. In the presence of other modes
of energy transfer, the optically thin solutions also depend on the plate
spacings. As would be expected, for the same physical conditions, the steady-

state condition is reached quicker for the lower plate spacing.

The temperature variations within the plates are shown in Figs. 5.8-5.11
for different species and for P =1 atm and L = 5 cm. In the absence of
molecular conduction, temperature Jjumps (radiation slips) occur at the
boundaries and, therefore, the general solutions for the case of radiative

equilibrium are not presented. However, general as well as limiting solutions
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are presented for the case of radiation with conduction. It is noted, in
general, that for the case of radiation with conduction, the steady-state
conditions are reached for all species at t > 0.1 and for T, 2 500 K. For
the case of pure radiation, the steady-state conditions are reached at
relatively longer times. The optically thin results are seen to be independent
of the E-coordinate for the case of radiative equilibrium and are seen to
vary slowly in the central portion of the plates for the case of radiation
with conduction., This is because, in this 1imit, the gas interacts directly
with the boundaries and conduction is predominant near the walls. Specific
results for CO are illustrated in Figs. 5.8 for T, = 1,000 K. For the case of
radiation with conduction, general and limiting solutions are compared in Fig.
5.8a; and for both cases, the radiative equilibrium and radiation with
conduction, limiting solutions are compared in Fig. 5.8b. The steady-state
results for pure conduction are also shown in Fig., 5.8b for comparative
purposes. The results demonstrate the typical trends for limiting and general
solutions, i.e., a lower temperature gradient implies a higher rate of energy
transfer. Specific results for OH are illustrated in Figs. 5.9 for T, = 500
K. General and limiting solutions are shown in Fig. 5.9a; and Timiting
solutions are compared in Figs. 5.9b and 5.9c. For the case of radiation with
conduction, the 1limiting and general solutions are seen to be in good
agreement for all times (Fig. 5.9a). This is because for the conditions of
the illustrated results, conduction dominates the energy transfer process in
OH. The typical trends in results for the optically thin and large path
length 1imits are shown in Figs. 5.9b and 5.9c, respectively. Figure 5.9b
clearly shows that for all times the radiative equilibrium results are
independent of the £E£-coordinate in the optically thin limit. Figure 5.9

shows that at earlier times the rate of energy transfer is higher in the
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presence of conduction. Specific results for H,0 are illustrated in Figs.
5.10 for the case of radiation with conduction. It is seen clearly that the
rate of cooling is signficantly higher in the large path length limit (Fig.
5.10a), and the steady-state conditions are reached at relatively longer times
for lower T, values (Fig. 5.10b). For the case of combined radiation and
conductﬁon, a comparison of results for different species is shown in Fig.
5.11 for t = 0.01 and 0.1. The results for t = 0.1 essentially correspond to
the steady-state conditions. For t = 0.01, the variation in temperature is
seen to be relatively small between £=0.2 and 0.9. The centerline
temperature is found to be the lowest for H20, and this is followed by 0OH, CO,
and CO,. However, it is noted that OH is very effective in transferring the
net energy in comparison to the other species. As discussed earlier, this is

mainly due to relatively higher conductive ability of OH at T, = 500 K.

The centerline temperature distributions are shown in Figs. 5.12-5.15 for
different gases as a function of the spacing between the plates. In most
figures, results are presented for both cases, the radiative equilibrium and
radiation with conduction. In selected figures, results for the case of pure
conduction are included also for comparative purposes. For a particular gas,
specific results are presented for various times to demonstrate the radiative

nature of the gas under different pressure and temperature conditions.

The results for CO are presented in Figs. 5.12 for different cases. For
P=1and T, = 500 K, the results illustrated in Fig. 5.12a show that the time
required to reach the steady-state condition increases with increasing plate
spacings. For a particular plate spacing, the centerline temperature is lower
for the case of radiation with conduction than for pure radiation for all
times. For P = 1 atm and T, = 1,000 K, results presented in Fig. 5.12b show

that the large path length solutions are closer to the general solutions for L
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> 20 cm; and the results for pure radiation and radiation with conduction are
identical for t > 0.5. The centerline temperature variations are shown in
Fig. 5.12¢ for t = 0.5 T, = 500 K, and different pressures. It is noted that
while the heat transfer by conduction is insensitive to the change in
pressure, the radiative heat transfer is strongly dependent on it. The rate
of radiative interaction increases with increasing pressure until the large
path length limit is reached for sufficiently large values of L. For the case
of pure radiation, the results for P = 0.1 atm differ considerably from other
results. This is due to use of the Tien and Lowder's correlation which is
suitable only at relatively higher pressures (Ref, 11). The centerline
temperature variations are shown in Fig. 5.12d for t = 0.5, P = 1 atm, and
different values of T, . As would be expected, both conductive and radiative
interactions increase with increasing temperatures, although the increase in
radiative transfer is comparatively higher. It should be noted that for T, =
300 K, T2 = 2 TW = 600 K, for Ty = 500 K, T2 = 1,000 K, and so on. Thus, for
a higher value of T, = T;, the energy interactions occur at a sufficiently
large temperature difference between the upper and lower plates. At these
temperatures, if the plate spacing is small, the energy is transferred quickly
and the steady-state condition is reached at relatively shorter times. This

fact was pointed out also in the discussion of results of Figs. 5.7.

The centerline temperature variations for OH are illustrated in Figs.
5.13 for different conditions. The results presented in Fig. 5.13a for P = 1
atm and T, = 500 K show the similar trend as CO in Fig. 5.12a, although the
extent of energy transfer by simultaneous radiation and conduction is
relatively higher. This is because at T, = 500 the energy transfer in OH is
dominated by the conduction heat transfer. General and Timiting solutions for

radiative equilibrium are shown 1in Fig. 5.13b and for radiation with
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conduction in Fig. 5.13c. These results clearly demonstrate the typical
radiative interaction trends for different times. The results show that the
optically thin solutions are independent of the plate spacing in the case of
pure radiation but depend on the spacing when molecular conduction is
included. The large path Tength results are seen to be valid only for large
values of L for the case of pure radiation (Fig. 5.13b), but they appear to be
valid in the entire range for the case of radiation with conduction (Fig.
5.13c). The results for pure conduction, pure radiation, and conduction with
radiation are illustrated in Fig. 13d for P = 1 atm and T, = 1,000 K. For
this temperature, the results for pure radiation and radiation wih conduction
are found to be identical. This indicates that at higher temperatures, OH
becomes a highly radiation participating gas. The results for variation of
the centerline temperature for OH with pressure and temperature are given in
Figs. 5.13e and 5.13f and they show the same general trend as the results for

CO shown in Figs. 5.12¢ and 5.12d.

Extensive results of 6(fZ = 0.5) versus L have been obtained for H,0 and
C0, for different conditions and some of these are illustrated in Figs. 5.14.
In general, these results show similar trends as exhibited by the results for
CO and OH but the extent of radiative interactions is entirely different. For
example, a comparison of results presented in Fig. 5.14a for H,0 with the
results of Fig. 5.12a for CO and Fig. 5.13a for OH for identical conditions
reveals that H,0 is a highly radiation participating gas even for shorter
times. For Hy0, results presented in Fig. 5.14b demonstrate that the large
path length solutions are closer to the general solutions for both cases, the
radiative equilibrium and radiation with conduction. The centerline
temperature variation with L is shown for Ho0 in Figs. 5.14c and 5.14d for
different pressure and temperature. As epxected, radiative effects are seen

to be higher at higher pressure and temperature.
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The centerline temperature variations are compared for different gases in
Fig. 5.15 for P = 1 atm, T, = 500 K, and t = 0.05. For the case of radiative
equilibrium, it is noted that OH is the least effective and H,0 is the most
effective gas in transferring the radiative energy for plate spacings greater
than two centimeters. When molecular conduction is included, OH becomes more
effective because of its relatively higher conductive ability. These points
were noted also in earlier discussions. The story, however, can be entirely
different for other physical conditions because of the radiative/conductive
nature of participating species (Ref. 8 and Appendix C). This fact is
partially evident from the steady-state results, for the case of combined
radiation and conduction, presented in Fig. 5.16 for two different
temperatures, T, = 300 K and 500 K. For example, for T, = 300 K and L = 10
cm, the temperature values for CO and COZ are about the same, for H20 it is
lower, and for OH it is the lowest; however, for plate spacing greater than L
= 20 cm, the trend is entirely different. Also, it should be noted that the
steady-state (t = 0.5) results for T, = 500 K in Fig. 5.16 show different
trend than the results for the same temperature in Fig. 5.15 for t = 0.05.
Thus, in order to predict the relative ability of a gas for radiative
interactions, it is very important to consider the exact physical conditions
for all species. These predictions may not be applicable if physical

conditions of the problem are changed.

Extensive results for the variation in heat transfer can be presented
analogous to the variation of temperature for different conditions. However,
this should not be necessary because the heat transfer variation follows the
trend of the temperature variation in a reverse manner. If the temperature
differences are higher, the rate of heat transfer will be higher and the

steady-state conditions will be reached at earlier times. The results for
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heat transfer variations have been obtained for selected conditions and these

are discussed here briefly.

For P = 1 atm, the results for Q and Q are illustrated, as a function
of t*, in Figs. 5.17-5.20 for different species. The results for t* = 0.0 -
1.0 are shown in Fig. 5.17a for HZO. However, it is found that for the t,
value selected in this study, the steady-state conditions are reached in most
cases at about t* = 0.2. Consequently, other results (Figs. 5.17b, 5.17c,
5.18-5.20) are presented only in the range of t* = 0.0 - 0.2 to demonstrate
the rate of cooling at different temperatures. As would be expected, the
results show that for a given plate spacing the gas layer reaches the steady-
state condition faster at higher values of T, because of stronger radiative
interactions. It should be noted that the rate of energy transfer increases
with time for a gas layer closer to the upper wall (£ = 0.75) and decreases
with time for a gas layer closer to the lower wall (£ = 0.25) wuntil the
steady-state conditions are reached. The rate of cooling 1is entirely
different if the plate spacing is changed (Fig. 5.17c). From a comparison of
results of Figs. 5.17-5.20, it is noted that the trend and rate of energy
transfer are different for different species. This, however, would be
expected because of the relative ability of different species to participate

in the radiation-conduction interaction process (Appendix C).
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6. CONCLUSIONS

The problem of transient radiative interaction in nongray absorbing-
emitting species has been formulated in a general sense such that sophisti-
cated absorption models can be used to obtain accurate results if desired.
Results have been obtained for the special case of radiative interactions in a
plane gas layer bounded by two parallel plates when the temperature of the
bottom plate is suddenly reduced to a lower but constant temperature. The
energy transfer by pure radiation, and by simultaneous radiation and
conduction were considered and specific results have been obtained for (O,
Co,, H,0, and OH by employing the Tien an Lowder's correlation for band
absorption. It is noted that the extent of radiative interaction is dependent
on the nature of the participating species and parameters Tis TZ/Tl, P, L, and
to. The steady-state conditions are reached at relatively longer times for
radiative equilibrium than for radiation with conduction. For a particular
value of P and T;, the time required to reach the steady-state condition
increases with increasing plate spacing. For a fixed plate spacing, the
energy s transferred quickly for higher T; values because of large
temperature differences between the plates. The rate of radiative interaction
increases with increasing pressure until the large path length limit is
reached. The radiative equilibrium solutions are found to be independent of
the plate spacing in the optically thin 1imit. In the case of simultaneous
radiation and conduction, both optically thin and large path length solutions
depend on the y-location between the plates. At moderate temperatures, OH is
a poor radiating but better heat conducting gas. For most conditions, H20vis
found to be highly radiation participating species, and the steady-state
conditions are vreached quickly for Ho0 than for other species. The
information on radiative interactions for OH and H20 is useful in the analysis

of the flow field in the scramjet engine.
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APPENDIX A

SPECTRAL INFORMATION AND CORRELATION QUANTITIES
FOR IMPORTANT INFRARED BANDS

Spectral information and correlation quantities for important infrared
bands are available in [7-9]. The exponential band model correlation

quantities for important bands of CQ, CO,, H,0, and CH4 are given in Table

2° 2
A.1. For some species, revised data are now available in [9].

In developing correlation quantities for different bands, it is
important to have information on the integrated band intensity S(TO) and the
band width parameter AO(T). The band intensities of many molecular bands
are available in the literature [7-9, 24, 25] but this is not the case with
the band width parameter. Different relations for AO(T) are proposed by
Edwards et al. in references cited in [9]. From a critical evaluation of
different relations available in the literature for AO(T) and after personal
communications with Dr. D.K. Edwards, it was decided to adopt the following

two relations:

a () =112 (3 (&KTB)L/2 (A.1)
4 hc

A(T) = 0.9 (3) 2kTB)1/2 (A.2)
hc

where B is the rotational constant of lower level, c is the speed of light,
h is the Planck's constant and k is the Boltzmann's constant. The value of

B is different for different molecules. Equations (A.1l) and (A.2) are




essentially the same except Eq. (A.1) will result in a coefficient of 0.707
instead of 0.9. It is suggested to use Eq. (A.2) in determining approximate
relations for AO(T) for all molecules whose values are not available in the
literature. Information on the rotational constants for different
molecules is available in the literature (for example, see Ref. 24). It is
suggested to use the eduivalent value for the rotational constant of
polyatomic molecules.

It should be noted that in Eqs. (A.l) and (A.2), B, c, h, and k are

constants and do not depend on the temperature. Thus, Eq. (A.2) may be

expressed as:

A,(T) = CONST (1y1/2 (A.3a)
where
CONST = 0.9 12 (3) (KBe) 1/2 (A.3b)
4 hc

and Be represents the equivalent rotational constant. By evaluating Eq.

(A.3a) at a reference temperature Tref’ the value of AO(T ) can be

ref
determined and, therefore, Eq. (A.3a) may be expressed alternately as:

AL(T) = A (T

0 ) (T/Tref)l/Z. (A.4)

ref

Equation (A.4) is a convenient form to compare its results with experimental

values.

By noting that rl Li = [r (3/4)]2 and substituting values for ¢, h,
4

and k, Eg. (A.3) can be expressed as:

A(T) = 1.59313 (BeT)l/2 (A.5)
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where Ay and B, have units of cm-1 and T is in degrees Kelvin. For a

particular gas, Ao (Tref) can be obtained from Eq. (A.5) and then Eq. (A.4)

can be used to determine AO(T) at other temperatures. For example, for CO
the rotational constant is 1.931 cm-l and at a reference temperature of

300 K, AO(T = 300 K) = 38.344 cm-l. This compares very well with the

ref
experimental value of 38.1 given if Refs., 7 and 9 and presented in Table

A.l. Similarly, for the 4.3 u band of C02, the equivalent rotational

1

constant is 0.3906 cm'1 and, therefore, AO(T = 300 K) = 17.246 cm ~; the

ref
experimental value of 19.9 cm'1 given in Table A.l for this band is slightly

higher.

Spectral Information for OH

For the fundamental band of OH, the following information is obtained

from Ref. 25:

Band center, w. = 3570 Cm_l,

Band strength at STP, S(T ) = 110 em 2 atm!

Also, from Ref. 24 the information on equilibrium rotational constant for OH

is obtained as:

2

A%ty 17,355 em !

2

X “m; > 18.871 en”t
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Thus, it is suggested to use a value for the equilibrium rotational constant

-1 . . .
for OH as Be = 18 cm . Using this, a value of A0 (Tref= 300 K) is found

as

A (T

- . /2 _
o (Tre = 300) = 159313 (BT, ()" ° = 117.0707.  (A.6)

Considering the value of A (T _.) = 117 cm'l, the relation for Ao(T) for OH

o' ref
is given as:

A(T) = 117 (1/300) /2. (A.7)
By knowing e S (TO), and AO(T), other required spectral information for

OH can be evaluated.
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Correlation quantities are based on the results of reference [9].

The

intensity of the band marked with * was taken from the reference [7].

1/2 3/2

Notations: Kl(T) = (T/300)""°, KZ(T) = (300/T)°'°%,

51 = Loy MM T x 107, 6, = 05 2(T) /L0y (TIKY(T)]

>
1]

6.625 x 10 ~2’ erg-sec, C = 2.998 x 100 cm/sec,

1.380 x 10718 erg/K , hC/k = 1.44 cm - K

=
[}

Temperature range: 300 K< T< T . For Co, T = 1800 K.
max max

For CO,, T « = 1400 K, For H

2 'ma 0, TmaX = 1100 K. For CH

2 4°

Tmax = 830 K.
For €O, w = 2143 cm ~* and
01(T) = [15.15 + 0.22 (1/T_)/%] [1-exp (-hCu/kT)1, T, = 100 K

1

For CO,, w; = 1351 cm o,

1 1

, = 667 cn -, wy = 2396 cm

¢,(T) = {1 - exp [( - hC/KT ) (wl + w3)]}x

2
{[1 - exp ( - hCuy/KT)T [1 - exp (-hCo/kT) I, 6(T) = 1 +

0.053 (7/100)3/2
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For Hy0, wy = 3652 cm'L, wp = 1595 cn™l, wy = 3756 cm "1

¢v1 Vo V3 (TYy = {1 -exp [ - hC(v1 Wy ¥V, w, Vg w3)/kT]} X

{[1-exp ( -wal/kT)] [1-exp(-wa2/kT] [l-exp(-wa3/kT]} -1

-1/2

¢7 (T) =exp [ - 17.6 (T/100) ]



APPENDIX B

THERMODYNAMIC AND TRANSPORT PROPERTIES
OF SELECTED SPECIES

It is important to consider the variation of thermodynamic and trans-
port properties of various species with temperature and pressure. Quite
often, the variation in properties with the pressure is not as crucial as
with the temperature. The information on variation of different properties
is provided here.

The information on variation of the thermal conductivity with temper-

ature is obtained from Ref. 27 and this is expressed as:

A=Ay (T/TO)n (B.1)
where
T = Temperature, K
Ao = thermal conductivity at T0 = 273 K, k cal/m-hr-K
n = constant as given in Table Bl

In order to be consistent with the units used in the present work, Eq. (B.l)

is expressed as:

4

10 Ao

A= (T/273)n , erg/sec-cm-K (B.2)
(36) (23.889)
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For Eq. (B.2) the value of Ao is obtained from Table B.l; the units for A,

are shown in the table. For example, thermal conductivities of CO and CO2

are expressed as:

CO: A = (11.627865289 x 200) (T/273)%8 (8.3)
=2325.570579% ((TW/273.0)**0.8)
€O, : A = (11.627865289 x 128) (T/273)1-23
2" . (B.4)

1488.365171* ((TW/273.0)**1.23)

Thus, for Eq. (B.2), the tabulated values for Ao should be used without
dividing by the factor 104.

Thermal conductivities of other species can be calculated in a similar
manner. For species not listed in the Table B.1l, values should be obtained
from Ref. 27 or other sources such as Ref. 26. For higher tmperatures,
values available in Ref. 26 should be used. Some of the values used in the
present study are listed in Table B.2.

The relations for the constant-pressure specific heat for different

ideal gases are available in Ref. 28 and these are given in Table B.3 for

€0, OH, C02, and HZO'
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Table B.1 Constants for Calculation of Thermal Conductivity.

%o- 10° Ma x imum
Molecule kcal/m-hr-°C " Temperature, °C
co 200 0.80 1,000
co, 128 1.23 1,000
CHy 264 1.33 600
H, 0 130 1.48 1,000
NH3 181 1.53 1,000
N50 130 1.23 1,000




Table B.Z‘ Thermal Conductivity of Selected Species*,

erg/ (cm-sec-K).

Temp., K Molecule
OH co Co, H,0

300 (4879.71) 2507. 82 1671.43 1738.04
(2674.22) (1820.47) (2925.31)
500 (6993.13) 3773.77 3133.02 3703.67
(3938.09) (3339.63) (4980.15)
1,000 (11504.56) 6570. 51 7349.02 10325.76
(6888.51) (6716.93) | (11588.26)
2,000 (20276. 33) 11439.93 17238. 37 28803. 58
(11730.56) (11822.63) | (26302.73)

Values in parenthesis are from Ref. 26.
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Table B.3 Constant-pressure specific heat for selected ideal gases

(Ref. 28).
Gas Cp = kd/kmole-K, & =T (Kelvin)/100
co 5 = 69.145 - 0.70463 8975 _ 200.77 6795 4+ 176.76 670-7°
OH 5 = 81.546 - 59.350 69-25 4 17,329 %75 _ 4.266 o
co, 5 = 3.7357 + 30.529 69-5 _ 4.1034 o + 0.024198 62
H,0 . 143.05 - 183.54 60-2% + 82,751 695 - 3.6989 o
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APPENDIX C

RADIATIVE ABILITY OF SELECTED SPECIES IN OPTICALLY THIN
AND LARGE PATH LENGTH LIMITS

The quantities, M1 and N, defined in Eqs. (2.10) represent the

1
interaction parameters for radiation versus conduction heat transfer. As
pointed out in Secs. 2.3 and 4, the dimensional gas property Nl/k represents
the relative importance of radiation versus conduction in the optically thin
limit. Similarly, the gas property Ml/(RL) = Hl/k represents the relative
importance of radiation versus conduction in the large path length limit.
The radiative properties K1 and H1 are defined, respectively, by Egs.
(2.10c) and (2.10e).

The quantities K1 and K1/k were calculated for a number of gases and
the results are illustrated in Figs. C.1. The results presented in Fig.
C.la show the radiative ability of different species in the optically thin
1imit. The results presented in Fig. C.1b demonstrate the relative
importance of radiation versus conduction in the optically thin 1imit.
Similarly, the results for H1 and Hl/k were calculated to investigate the
interaction in the large path length 1imit and these are illustrated in
Figs. C.2a and C.2b. A comparison of results presented in Figs. C.1 and C.2
shows a considerable difference in the radiation-conduction interaction for
the optically thin 1imit as opposed to the large path length limit. For
example, in the optically thin limit CO2 possesses a large radiation
interaction relative to the other gases, while the reverse is true in the
Targe path length Timit. On the other hand, just the opposite trend is

observed for H20.
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Fig. C.2b Interaction parameter for
large path length limit.
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APPENDIX D
COMPUTER PROGRAM FOR TRANSIENT RADIATIVE TRANSFER IN NONGRAY GASES

Following the numerical procedure of Sec. 3, a general computer program
is developed to calculate the transient radiative transfer in nongray gases
between two parallel plates having constant wall temperature. The program
can be used to calculate the conduction and radiation heat transfer
separately as well as heat transfer due to the combined process of
conduction and radiation. The program provides the general solution as well
as the limiting (optically thin and large path length) solutions. The
program is written for the five-band H20 gas, but can be used for any gas by

employing appropriate thermophysical and radiative properties.
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1 PROGRAM TRAN(QUTPUT=65,TAPE6,TAPE10,TAPELS)

C***********************************************************************

THIS PROGRAM CALCULATES THE TRANSIENT RADIATIVE
INTERACTION IN H20 BETWEEN TWO PARALLEL PLATES
FOR CONSTANT WALL TEMPRATURE.

e o 3 T e e e e e o e e v Fe T e Je e de e e e Je o do e e e Je e e s e de e e e o e e e e Fe e de e de Jo e e Fe e de dode Jede Jo e dode Je e dododededo ke do ke

| — NONDIMENSIONAL TIME

----- PRESSURE (ATM)
TW----TEMPERATURE OF LOWER PLATE (K)
— DISTANCE BETWEEN TWO PLATES (CM)
p NONDIMENSIONAL Y COORDINATE
TM----CHARACTERSITIC TIME (SEC)

IR=1 ONLY RADIATION

IR=2 RADIATION & CONDUCTION

IR=3 ONLY CONDUCTION

OO0
0

EXTERNAL F311,F312,F313,F314,F315,F321,F322,F323,F324,F325,F411
&,F412,F413,F414,F415,F421,F422,F423,F424,F425,FQL1,FQ12,FQ13,FQl4

&% ,FQl5,FQ21,FQ22,FQ23,FQ24,FQ25

DIMENSION U(20),EPS(3),PRES(10),TEMP(8),TT(20)
REAL KFB,L,M1,M2,M3,M4,M5,R

COMMON F1,F2,F3,F4,F5,81,82,83,B4,85,THETA,Z
DATA U/0.1,0.2,0.5,1.0,2.,5.,10.,20.,50.,100.,
& 200.,500.,1000./

DATA PRES/0.01,0.1,1.0,10.0/

DATA TEMP/300.0,500.0,1000.0,2000.0,3000.0/
DATA TT/0.01,0.02,0.05,0.1,0.5,1.0/

00 11 IR=1,3

IF(IR.EQ.1) WRITE(6,111)

IF(IR.EQ.1) WRITE(10,114)

IF(IR.EQ.1) WRITE(15,115)

IF(IR.EQ.2) WRITE(6,112)

IF(IR.EQ.2) WRITE(10,113)

IF(IR.EQ.2) WRITE(15,116)

IF(IR.EQ.3) WRITE(6,561)

IF(IR.EQ.3) WRITE(10,564)

IF(IR.EQ.3) WRITE(15,565)

TM=0.00001

WRITE(6,886) TM

WRITE(10,886)TM

WRITE(15,886)TM

TIME MARCHING

OO0

00 22 ITT=1,5
T=TT(ITT)
WRITE(6,888)T
WRITE(10,888)T
WRITE(15,888) T
WRITE(6,666)
WRITE(10,666)
WRITE(15,666)
00 33 IT=1,4
TW=TEMP(IT)
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OO OOOOO

OO0

T2=2%TW
0Z=0.1
7=0.1

DO 44 17
00 55 KK
P=PRES (KK
DO 66 I=1,13

L=U(I)

IF(IR.EQ.3) GOTO 360

1,5
+4

2
)

CALCULATION OF PLANCK FUNCTION AND ITS DERIVATIVE

WNB---- BAND CENTER (1/CM)
HCK---- CONSTANT (K CM)
CCC---- C1*C2 (ERG-K-CM**3/SEC)

PFDBI-- PLANCK FUNCTION DERIVATIVE FOR I BAND

CESS=TW**2.0
STU=TW**0.5
SNT=TW/273.0
HCK=1.439257246
BT3=5.668*10**(-5.)*TW**3.
WN1=500.0
WN2=1600.0
WN3=3750.0
WN4=5350.0
WN5=7250.0
C2C1=HCK*WN1
C2C2=HCK*WN2
C2C3=HCK*WN3
C2C4=HCK*WN4
C2C5=HCK*WNS5
CCC=0.000053847734

SPECTROSCOPIC PROPERTIES OF H20
WNBI---- BAND CENTER (1/CM)

HERE WE HAVE CONSIDERED ONLY FIVE BANDS(20,6.3,2.7,1.87, &1.38 MICRONS)

CCCL=CCC* (WN1**4)
CCC2=CCC* (WN2**4)
CCC3=CCC* (WN3**4)
CCCA=CCC* (WN4**4)
CCC5=CCC* (WN5**4)
TB1=C2C1/TW
TB2=C2C2/TW
TB3=C2C3/TW
TB4=C2C4/TW
TB5=C2C5/TW
TEBL=EXP (TB1)
TEB2=EXP (TB2)
TEB3=EXP(TB3)
TEBA4=EXP (TB4)
TEB5=EXP (TB5)
SNTB1=CESS*( (TEB1
SNTB2=CESS*( (TEB2

)**2.0)
*%2.0)

-1.0
-1.0)
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SNTB3=CESS*( (TEB3-1.0)**2.0)
SNTB4=CESS*( (TEB4-1.0)**2.0)
SNTB5=CESS*( (TEBS-1.0)**2.0)
PFDB1=(CCC1*TEB1)/SNTBI
PFDB2=(CCC2*TEB2) /SNTB2
PFDB3=(CCC3*TEB3)/SNTB3
PFDB4=(CCC4*TEB4) /SNTB4
PFDBS=(CCC5*TEBS) /SNTBS

BAND MODEL CORRELATIONS (TIEN & LOWDER WIDE BAND MODEL)

AZl ----AOI/(1/CM)
CZSI ----COI**2 (1/(ATM-CM))
BSI ----B**2 (NON DIMENSIONAL)

OMGI ----WAVE NUMBER(1/CM)

AK1=(TW/300.0)**0.5
AK2=(300.0/TW)**1.5
AZ1=49.4%*AK1
AZ2=90.1*AK1
AZ3=112.6*%AK1
AZ4=79.7*AK1
AZ5=79.7*AK1
OMG1=3652.0
O0MG2=1595.0
OMG3=3756.0
TX=-(HCK/TW)
TX1=TX*OMG1
TX2=TX*OMG2
TX3=TX*OMG3
ETX1=EXP(TX1)
ETX2=EXP(TX2)
ETX3=EXP(TX3)
Cl=1.0-ETX1
C2=1.0-ETX2
C3=1.0-ETX3

BRKT=TX* (OMG1+OMG3)
PHI1Z1=(1.0-EXP(BRKT))/(C1*C2*C3)
DJ=17.6/(TW/100.0)**0.5
PHI7=EXP(-DJ)
TS=300.0/TW
CZS1=771*AK2*PHI7
CZS52=3.35*AK2
CZS3=1.52*%AK2
CZS4=0.276*AK2*PHI1Z1
CZS5=0.23*AK2*PHI171

ST ---- INTEGRATED BAND INTENSITY (1/(ATM CM**2))

S1=CZS1*AZl
$2=CZS2*AZ2
$3=CZS3*AZ3
S4=CZS4*AZ4
S5=CZS5*AZ5

PL ---- PRESSURE PATH LENGTH (ATM-CM)




OO0 OO0 OO0

OOOOO

PL=P*L
UZ1=CZS1*PL
UZ2=CZS2*pPL
UZ3=CZS3*PL
UZ4=CZS4*PL
UZ5=CZS5*PL
Bl=1.5*UZ1
B2=1.5*UZ2
B3=1.5*UZ3
B4=1.5*UZ4
B5=1.5*UZ5
BS1=0.073/AK1
BS2=0.13/AK1
BS3=0.145/AK1
BS4=0.118/AK1
BS5=0.201/AK1

PET ----EFFECTIVE PRESSURE FOR EACH BAND (NON DIMENSIONAL)

PE1=(5.0%P)
PE2=(5.0*P)
PE3=(5.0%P)
PE4=(5.0%*P)
PE5=(5.0%P)

BETAI ---- LINE STRUCTURE PARAMETER

BETA1=BS1*PE1l
BETA2=BS2*PE2
BETA3=BS3*PE3
BETA4=BS4*PE4
BETAS5=BS5*PES

CORRELATION FOR EACH BAND

F1=2.94*(1.0-EXP(-(2.60*BETAL)))
F2=2.94*(1.0-EXP(-(2.60*BETA2)))
F3=2.94%(1.0-EXP(-(2.60*BETA3)))
F4=2.94%(1.0-EXP(-(2.60*BETA4)))
F5=2.94%(1.0-EXP(-(2.60*BETA5)) )

NUMERICAL INTEGRATION
FOR DETAILS OF INTEGRATION REFER MATHEMATICAL LIBRARY
AT NASA LANGLEY (DOCUMENT N-3)

EPS(1)=1.0E-12
EPS(2)=1.0E-12

X=0.0

CALL CADRE(X,Z,F311,EPS,ITEXT,G311, IERR)

CALL CADRE(X,Z,F312,EPS,ITEXT,G312, IERR)

CALL CADRE(X,Z,F313,EPS,ITEXT,G313, [ERR)

CALL CADRE(X,Z,F314,EPS,ITEXT,G314, [ERR)

CALL CADRE(X,Z,F315,EPS,ITEXT,G315, IERR)

CALL CADRE(Z,1.,F321,EPS,ITEXT,6321, IERR)
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60

CALL CADRE(Z,1.,F322,EPS,ITEXT,G322,IERR)
CALL CADRE(Z,1.,F323,EPS,ITEXT,G323,IERR)
CALL CADRE(Z,1.,F324,EPS,ITEXT,G324,IERR)
CALL CADRE(Z,1.,F325,EPS,ITEXT,G325,IERR)
CALL CADRE(X,Z,F411,EPS,ITEXT,G411,IERR)
CALL CADRE(X,Z,F412,EPS,ITEXT,G412,IERR)
CALL CADRE(X,Z,F413,EPS,[TEXT,G413,[ERR)
CALL CADRE(X,Z,F414,EPS,ITEXT,G414,IERR)
CALL CADRE(X,Z,F415,EPS,ITEXT,G415,IERR)
CALL CADRE(Z,1.0,F421,EPS,ITEXT,G421,IERR)
CALL CADRE(Z,1.0,F422,EPS,ITEXT,G422,IERR)
CALL CADRE(Z,1.0,F423,EPS,ITEXT,G423,IERR)
CALL CADRE(Z,1.0,F424 ,EPS,ITEXT,G424,IERR)
CALL CADRE(Z,1.0,F425,EPS,ITEXT,G425,IERR)
H1=AZ1*PFDB1

H2=AZ2*PFDB2

H3=AZ3*PFDB3

H4=AZ4*PFDB4

H5=AZ5*PFDBS

CONTINUE

RHO----- DENSITY
R SPECIFIC HEAT AT CONSTANT PRESSURE.
KFB----- THERMAL CONDUCTIVITY

RHO=0.0128677*18. /TW
TC=TW/100.
CP=(143.05-183.54%TC**Q.25+82.751*TC**0.5-3.6989*TC) /18.
CON=TM/ (L*RHO*CP)
KFB=(1511.620876)*(SNT**1.48)
R=(KFB*TM) / (L*L*RHO*CP)
12=1*1

CZ=1./(Z-12)

IF(IR.EQ.3) GOTO 362
M1=CON*H1

M2=CON*H2

M3=CON*H3

Ma=CON*H4

M5=CON*H5

AN1=M1*UZ1

AN2=M2*yZ2

AN3=M3*UZ3

AN4=M4*UZ4

ANS=M5*(Z5
SUM31=AN1*1.5%(G311-G321)
SUM32=AN2*1.5*(G312-G322)
SUM33=AN3*1.5%(G313-6323)
SUM34=AN4*1.5%(G314-G324)
SUM35=AN5*1.5%(G315-G325)
G3=CZ*(SUM31+SUM32+SUM33+SUM34+SUM3S5)
IF(IR.EQ.1) R=0.0
AJ3=G3+CZ*2.*R
SUM41=AN1*(G411-G421)
SUM42=AN2* (G412-G422)
SUM43=AN3*(G413-G423)
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OO0
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SUM44=AN4* (G414-G424)
SUMA5=ANS* (G415-G425)

G4=-3*CZ* (SUM41+SUMA2+SUMA3+SUMAA+SUMAS)
AJ4=GA+2 . *CI*R

GZ=(1-22)*CZ

EAJ3T=EXP (- (AJ3*T))
GT=(GZ-(AJ4/AJ3) ) *EAJ3T+AJ4/AJ3

CONTINUE

IF(IR.EQ.3) GT=(EXP(2*R*T/(Z12-1))+1)/Z
THETA=22+GT*(Z-12)

IF(IR.EQ.3) DFLUX=-KFB*(T2-TW)*(2*Z+GT*(1-2*Z))/L
TWA=TW**4

T24=T2%*4

IF(IR.EQ.3) FLUX=DFLUX/(5.668%10%*(-5.)*(TH4-T24))
IF(IR.EQ.3) GOTO 364

CALL CADRE(0.0,Z,FQ11,EPS,ITEXT,GQ1l, IERR)

CALL CADRE(0.0,Z,FQl2,EPS, ITEXT,GQ12, IERR)

CALL CADRE(0.0,Z,FQ13,EPS, ITEXT,GQL3, [ERR)

CALL CADRE(0.0,Z,FQl4,EPS,ITEXT,GQL4, IERR)

CALL CADRE(0.0,Z,FQL5,EPS, ITEXT,GQ15, [ERR)

CALL CADRE(Z,1.0,FQ21,EPS, ITEXT,GQ2L, [ERR)

CALL CADRE(Z,1.0,FQ22,EPS,ITEXT,GQ22, lERR)

CALL CADRE(Z,1.0,FQ23,EPS, ITEXT,GQ23, [ERR)

CALL CADRE(Z,1.0,FQ24,EPS, ITEXT,GQ24, [ERR)

CALL CADRE(Z,1.0,FQ25,EPS,ITEXT,GQ25, IERR)
FLUX=1-3.*(UZ1*H1*(GQ11+GQ21)+UZ2*H2* (GQ12+GQ22)+UZ3*H3* (GQL3+GQ23
&)+UZ4*Ha* (GQ14+GQ24)+UZ5*H5* (GQL5+6Q25) )/ (8*BT3)
DFLUX=5.668%10%*(-5. ) *FLUX*(TWd-T24)

CONTINUE

WRITE (6,222) TW,P,L,THETA,Z,FLUX,DFLUX
IF(IR.EQ.3) GOTO 366

Z,
Z,
Z,
Z,

LARGE PATH LENGTH

DS=ABS((Z-1)/2)
G15=(2-(2*Z-1)*ALOG(DS) ) *CZ* (M1 +M2+M3+M4+M5)
G16=(1-Z*ALOG (DS) ) *CZ* (M1+M2+M3+M4+M5) *2,
AJ15=G15+2.*R*CZ

AJ16=G16+2.*R*CZ

EAJ15=EXP (-AJ15*T)
GAT=(GZ-(AJ16/AJ15))*EAJ15+AJ16/AJ15
22=1*1

THEL=22+G4T*(Z-22)

GQ3=THEL* (ALOG(Z)+13.81551055)
GQ4=(1-THEL)*(ALOG(1-Z)+13.81551055)
FLUXL=1-(H1+H2+H3+H4a+H5)*(GQ3+GQ4)/ (4*BT3)
WRITE(10,222) TW,P,L,THEL,Z ,FLUXL

OPTICALLY THIN --H20

AJ25=3% (AN1+AN2+AN3+ANG+ANS ) +2*R/ (Z-Z2)

AJ26=(-3% (AN1+ANZ+AN3+ANA+ANS ) *(22-0.5)+2*R) / (Z-22)
EAJ25=EXP (- (AJ25*T))
G6T=(GZ-(AJ26/AJ25) ) *EAJ25+AJ26/AJ25
THET=22+G6T*(Z-22)
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SPFD=S1*PFDB1+S2*PFDB2+S3*PFDB3+S4*PFDBA+S5*PFDBS
FLUXO=1-(3./(8*BT3) ) *P*L*SPFD*((1-Z)+(2*Z-1)*THET)
WRITE(15,222) TW,P,L,THET,Z,FLUXO

CONTINUE

CONTINUE

CONTINUE

7=1+02

CONTINUE

CONTINUE

CONTINUE

CONTINUE

FORMAT (5X , *GENERAL --H20----ONLY RADIATION*)
FORMAT (5X , *GENERAL --H20----RADIATION AND CONDUCTION*)
FORMAT (5X ,*LARGE PATH LENGTH --H20----RADIATION AND CONDUCTION*)
FORMAT (5X,*LARGE PATH LENGTH --H20----ONLY RADIATION*)
FORMAT(5X,* OPTICALLY THIN --H20----ONLY RADIATION*)
FORMAT(5X,* OPTICALLY THIN --H20----RADIATION AND CONDUCTION*)
FORMAT (5X , *GENERAL --H20----ONLY CONDUCTION*)
FORMAT (5X ,*LARGE PATH LENGTH --H20----ONLY CONDUCTION*)
FORMAT(5X,* OPTICALLY THIN --H20----ONLY CONDUCTION*)
FORMAT (10X, *CHARACTERSITIC TIME (TM)=*,F12.9)

FORMAT (10X, *TIME=* F8.3)

FORMAT (4X,*TW*,T18,*P* T28,*L*,T38,*THETA*, T48,*Z* 56, *FLUX*
,T65,*DFLUX*)

FORMAT(6(1X, F9.4),1X,E12.6)

STOP

END

FUNCTION F311(ZB)

COMMON F1,F2,F3,F4,F5,81,82,83,84,85,THETA,Z
XX=B1*(Z-ZB)

DENL=(F1% ((XX**2.0)+(2.0%XX)+2.0)+XX) *(XX+2.0%F1)
AUDL=(F1*((XX**2.0)+(4.0%XX*F1)+(4.0%F1)))/DENL
F311=(1-2*ZB)*AUD1

RETURN

END

FUNCTION F312(ZB)

COMMON F1,F2,F3,F4,F5,81,82,83,84,85,THETA, Z
XX=B2*(Z-1B)

DEN2=(F2% ((XX**2.0)+(2.0%XX)+2.0)+XX ) * (XX+2.0*F2)
AUD2=(F 2% ( (XX**2.0)+(4.0%XX*F2)+(4.0%F2))) /DEN2
F312=(1-2*ZB)*AUD2

RETURN

END

FUNCTION F313(ZB)

COMMON F1,F2,F3,F4,F5,81,82,83,84,85,THETA,Z
XX=B3*(Z-ZB)

DEN3=(F3* ((XX**2.0)+(2.0%XX)+2.0)+XX)*(XX+2.0%F3)
AUD3=(F3* ( (XX**2.0)+(4.0%XX*F3)+(4.0%F3))) /DEN3
F313=(1-2*ZB)*AUD3 :

RETURN

END

FUNCTION F314(ZB)

COMMON F1,F2,F3,F4,F5,81,82,83,84,85,THETA,Z
XX=B4*(Z-Z8)

DENA=(F4* ((XX**2.0)+(2.0%XX)+2.0)+XX)* (XX+2.0%F4)
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AUDA=(Fa* ((XX**2,0)+(4.0%XX*F4)+(4.0*F4)))/DEN4
F314=(1-2*7B)*AUD4

RETURN

END

FUNCTION F315(ZB)

COMMON F1,F2,F3,F4,F5,81,82,B3,84,85,THETA,Z
XX=B5*(Z-ZB)

DENS= (F5% ( (XX**2.0)+(2.0%XX)+2.0)+XX)* (XX+2.0%F5)
AUDS=(F5% ( (XX**2.0)+(4.0%XX*F5)+(4.0*F5)))/DENS
F315=(1-2*7B)*AUD5

RETURN

END

FUNCTION F321(ZB)

COMMON F1,F2,F3,F4,F5,81,82,83,84,85, THETA,Z
XX=B1*(ZB-2Z)
DENL=(F1%((XX**2.0)+(2.0%XX)+2.0)+XX)*(XX+2.0*F1)
AUDL=(F1*( (XX**2.0)+(4.0%XX*F1)+(4.0%F1)))/DENL
F321=(1-2*ZB)*AUD1

RETURN

END

FUNCTION F322(ZB)

COMMON F1,F2,F3,F4,F5,81,82,83,84,85,THETA,Z
XX=B2*(ZB-2)

DEN2=(F2% ( (XX**2.0)+(2.0%XX)+2.0)+XX) * (XX+2.0%F2)
AUD2=(F2* ( (XX**2.0)+(4.0%XX*F2)+(4.0*F2)))/DEN2
F322=(1-2*ZB)*AUD2

RETURN

END

FUNCTION F323(ZB)

COMMON F1,F2,F3,F4,F5,81,82,83,84,85,THETA,Z
XX=B3*(ZB-1)

DEN3=(F3* ((XX**2.0)+(2.0%XX)+2.0)+XX)*(XX+2.0*F3)
AUD3= (F3* ( (XX**2.0)+(4.0%XX*F3)+(4.0*F3)))/DEN3
F323=(1-2*ZB)*AUD3

RETURN

END

FUNCTION F324(ZB)

COMMON F1,F2,F3,F4,F5,81,82,83,84,85,THETA,Z
XX=B4* (ZB-Z)

DEN4=(F4* ((XX*¥*2.0)+(2,0%XX)+2.0)+XX)* (XX+2.0%F4)
AUD4=(F4* ( (XX**2,0)+(4.0%XX*F4)+(4.0%F4)))/DENG
F324=(1-2*7B)*AUD4

RETURN

END

FUNCTION F325(Z8)

COMMON F1,F2,F3,F4,F5,81,82,83,84,85,THETA,Z
XX=B5*(ZB-7)
DENS=(F5*((XX**2,0)+(2.0%XX)+2.0)+XX)*(XX+2.0*F5)
AUD5=(F5*( (XX**2.0)+(4.0%XX*F5)+(4.0%F5))) /DENS
F325=(1-2*ZB)*AUDS

RETURN

END

FUNCTION F411(ZB)

COMMON F1,F2,F3,F4,F5,81,B2,B3,84,85,THETA,Z
XX=B1*(Z-ZB)
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DENL=(F 1% ((XX**2.0)+(2.0%XX)+2.0)+XX)* (XX+2.0*F1)
AUD1=(F1%( (XX**2.0)+(4.0%XX*F1)+(4.0*F1)))/DEN1
F411=ZB*AUD1

RETURN

END

FUNCTION F412(ZB)

COMMON F1,F2,F3,F4,F5,81,82,83,84,85, THETA,Z
XX=B2* (Z-Z8)

DEN2= (F2% ((XX**2.0)+(2.0%XX)+2.0)+XX) * (XX+2.0%F2)
AUD2=(F2* ( (XX**2.0)+(4.0%XX*F2)+(4.0*F2))) /DEN2
F412=7B*AUD2

RETURN

END

FUNCTION F413(ZB)

COMMON F1,F2,F3,F4,F5,81,82,B3,84,85, THETA,Z
XX=B3*(Z-ZB)
DEN3=(F3*((XX**2.0)+(2.0%XX)+2.0)+XX) * (XX+2.0%F3)
AUD3=(F3*( (XX**2.0)+(4.0%XX*F3)+(4.0*F3)))/DEN3
F413=7B*AUD3

RETURN

END

FUNCTION F414(ZB)

COMMON F1,F2,F3,F4,F5,81,82,83,84,85,THETA,Z
XX=B4*(Z-Z8)

DEN4= (F4* ((XX**2.0)+(2.0%XX)+2.0)+XX)*(XX+2.0%F4)
AUD4= (F4* ( (XX**2.0)+(4.0%XX*F4)+(4.0*F4)))/DEN4
F414=7B*AUD4

RETURN

END

FUNCTION F415(Z8)

COMMON F1,F2,F3,F4,F5,81,82,83,84,85,THETA,Z
XX=B5*(Z-Z8)

DENS=(F5% ((XX**2.0)+(2.0%XX)+2.0)+XX)*(XX+2.0*F5)
AUDS=(F5* ( (XX**2.0)+(4.0%*XX*F5)+(4.0%F5))) /DENS
F415=7B*AUDS

RETURN

END

FUNCTION F421(Z8)

COMMON F1,F2,F3,F4,F5,B1,82,83,B4,85, THETA,Z
XX=B1*(ZB-Z)
DENL=(F1*((XX**2.0)+(2.0%XX)+2.0)+XX) *(XX+2.0%F1)
AUDL=(F1*((XX**2.0)+(4.0%*XX*F1)+(4.0%F1)))/DENL
F421=7B*AUD1

RETURN

END

FUNCTION F422(ZB)

COMMON F1,F2,F3,F4,F5,81,82,B3,84,85,THETA,Z
XX=B2*(ZB-2)

DEN2=(F2* ((XX**2.0)+(2.0%XX)+2.0)+XX) * (XX+2.0%F2)
AUD2=(F2% ( (XX**2.0)+(4.0%XX*F2)+(4.0%F2)))/DEN2
F422=7B*AUD2

RETURN

END

FUNCTION F423(Z8)

COMMON F1,F2,F3,F4,F5,81,82,83,84,85,THETA,Z



XX=B3*(Z8B-Z)

DEN3=(F3% ( (XX**2.0)+(2.0%XX)+2.0)+XX)* (XX+2.0%F3)
AUD3=(F 3% ( (XX**2.0)+(4.0%XX*F3)+(4.0%F3)))/DEN3
F423=ZB*AUD3

RETURN

END

FUNCTION F424(ZB)

COMMON F1,F2,F3,F4,F5,B1,B2,83,84,85,THETA,Z
XX=B4* (ZB-Z)

DENd=(Fa* ((XX**2.0)+(2.0%XX)+2.0)+XX)* (XX+2.0%F4)
AUDA=(Fa* ( (XX**2.0)+(4.0%XX*F4)+(4.0%F4))) /DEN4
F424=7B*AUD4

RETURN

END

FUNCTION F425(Z8)

COMMON F1,F2,F3,F4,F5,81,82,83,84,B5, THETA,Z
XX=B5* (ZB-2)

DENS= (F5% ( (XX**2.0)+(2.0%XX)+2.0)+XX) * (XX+2.0*F5)
AUDS= (F5* ( (XX**2.0)+(4.0%*XX*F5)+(4.0%F5))) /DENS
F425=7B*AUDS

RETURN

END

FUNCTION FQL1(ZB)

COMMON F1,F2,F3,F4,F5,81,82,83,84,85, THETA,Z
XX=B1*(Z-Z8)
DENL=(F1*((XX**2.0)+(2.0%XX)+2.0)+XX)* (XX+2.0*F1)
AUD1=(F1*( (XX**2.0)+(4.0%XX*F1)+(4.0*F1)))/DEN1
FQ11=(THETA)*AUD1

RETURN

END

FUNCTION FQ12(ZB)

COMMON F1,F2,F3,F4,F5,81,82,B3,84,85, THETA,Z
XX=B2*(Z-ZB)

DEN2=(F2* ((XX**2.0)+(2.0%XX)+2.0)+XX) * (XX+2.0%F2)
AUD2= (F2* ( (XX**2.0)+(4.0%*XX*F2)+(4.0%F2))) /DEN2
FQ12=(THETA)*AUD2

RETURN

END

FUNCTION FQ13(ZB)

COMMON F1,F2,F3,F4,F5,81,82,83,B4,85,THETA,Z
XX=B3*(Z-18)

DEN3=(F3% ((XX**2.0)+(2.0%XX)+2.0)+XX) * (XX+2.0%F3)
AUD3=(F3*( (XX**2.0)+(4.0%XX*F3)+(4.0*F3)))/DEN3
FQ13=(THETA)*AUD3

RETURN

END

FUNCTION FQl4(Z8)

COMMON F1,F2,F3,F4,F5,81,82,83,B4,85, THETA,Z
XX=B4*(Z-1B)

DENA=(F4* ((XX**2.0)+(2.0%XX)+2.0)+XX) * (XX+2.0*F4)
AUDA=(Fa* ((XX**2.0)+(4.0%XX*F4)+(4.0%F4)))/DEN4
FQld=(THETA)*AUD4

RETURN

END

FUNCTION FQL5(ZB)
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COMMON F1,F2,F3,F4,F5,B1,B2,B3,B4,85,THETA,Z
XX=B5* (Z-ZB)

DENS=(F5*( (XX**2.0)+(2.0%XX)+2.0)+XX)* (XX+2.0%F5)
AUDS= (F5% ( (XX**2.0)+(4.0%*XX*F5)+(4.0%F5))) /DENS
FQ15=(THETA)*AUDS

RETURN

END

FUNCTION FQ21(ZB)

COMMON F1,F2,F3,F4,F5,B1,B2,83,84,85,THETA,Z
XX=B1*(ZB-Z)

DENL=(F 1% ((XX**2.0)+(2.0%XX)+2.0)+XX)*(XX+2.0*F1)
AUD1=(F1* ( (XX**2.0)+(4.0*XX*F1)+(4.0%F1)))/DENL
FQ21=(1-THETA)*AUD1

RETURN

END

FUNCTION FQ22(ZB)

COMMON F1,F2,F3,F4,F5,81,B2,83,84,85, THETA,Z
XX=B2*(ZB-1)

DEN2=(F2% ((XX**2,0)+(2.0%XX)+2.0)+XX)* (XX+2.0%F2)
AUD2=(F2* ( (XX**2.0)+(4.0%XX*F2)+(4.0%F2))) /DEN2
FQ22=(1-THETA) *AUD2

RETURN

END

FUNCTION FQ23(ZB)

COMMON F1,F2,F3,F4,F5,81,82,B3,84,85, THETA,Z
XX=B3*(ZB-Z)

DEN3=(F3* ((XX**2.0)+(2.0%XX)+2.0)+XX)* (XX+2.0*F3)
AUD3=(F3*( (XX**2.0)+(4.0*XX*F3)+(4.0%F3)))/DEN3
FQ23=(1-THETA)*AUD3

RETURN

END

FUNCTION FQ24(ZB)

COMMON F1,F2,F3,F4,F5,81,82,83,84,85,THETA,Z
XX=B4*(ZB-Z)

DENQ=(Fa* ((XX**2.0)+(2.0%XX)+2.0)+XX)* (XX+2.0*F4)
AUDA=(F4*( (XX**2.0)+(4.0%XX*F4)+(4.0%F4)))/DENS
FQ24=(1-THETA)*AUD4

RETURN

END

FUNCTION FQ25(ZB)

COMMON F1,F2,F3,F4,F5,81,82,83,84,85,THETA,Z
XX=B5*(ZB-Z)

DENS=(F5%( (XX**2.0)+(2.0%XX)+2.0)+XX)*(XX+2.0*F5)
AUDS5=(F5%( (XX**2.0)+(4.0%*XX*F5)+(4.0*F5)))/DENS
FQ25=(1-THETA)*AUD5

RETURN

END
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